
CS 229br: Advanced Topics in the
theory of machine learning

Boaz Barak

Join slack team and sign in on your devices!

Ankur Moitra
MIT 18.408

Yamini Bansal
Official TF

Dimitris Kalimeris
Unofficial TF

Gal Kaplun
Unofficial TF

Preetum Nakkiran
Unofficial TF

What is learning?

𝑓 World

What is learning?

𝑓 World

What is deep learning?

𝑓 World

OPT

ℒ

ℱ
data 𝑓

Benchmark

100

0

𝑓

ℒ ℝ

data

𝑓

OOD, domain shift,

robustness, fairness, ..

Generalization,..

Optimization,..

God’s view:

f = argmax𝑓 𝔼 (𝑓) data]

f = argmax𝑓 𝔼[(𝑓 ↔ 𝑤)]

𝑤 ∼ 𝑊|data

Perfect A Perfect B ≠ Approx A Approx B

This seminar
• Taste of research results, questions, experiments, and more

• Goal: Get to state of art research:

• Background and language

• Reading and reproducing papers

• Trying out extensions

• Very experimental and “rough around the edges”

• A lot of learning on your own and from each other

• Hope: Very interactive – in lectures and on slack

CS 229br: Survey of very recent research directions, emphasis on experiments

MIT 18.408: Deeper coverage of foundations, emphasis on theory

Student expectations
Not set in stone but will include:

• Pre-reading before lectures

• Scribe notes / blog posts (adding proofs and details)

• Applied problem sets (replicating papers or mini versions thereof, exploring)

Note: Lectures will not teach practical skills – rely on students to pick up using

suggested tutorials, other resources, and each other.

Unofficial TFs happy to answer questions!

• Some theoretical problem sets.

• Might have you grade each other’s work

• Projects – self chosen and directed.

Grading: We’ll figure out some grade – hope that’s not your loss function ☺

HW0 on

slack

Rest of today’s lecture:

Blitz through classical learning theory

• Special cases, mostly one dimension

• “Proofs by picture”

Part I: Convexity & Optimization

Convexity

𝑥 𝑦

𝑓
1. Line between x, 𝑓 𝑥 and (𝑦, 𝑓 𝑦) above 𝑓.

2. Tangent line at 𝑥 (slope 𝑓′(𝑥)) below 𝑓.

3. 𝑓′′ 𝑥 > 0 for all 𝑥

CLAIM: 𝑓′′ 𝑥 < 0 implies tangent line at 𝑥 above 𝑓

Proof: 𝑓 𝑥 + 𝛿 = 𝑓 𝑥 + 𝛿𝑓′ 𝑥 + 𝛿2𝑓′′ 𝑥 + 𝑂(𝛿3) implies 𝑓 below line

Convexity

𝑥 𝑦

𝑓
1. Line between x, 𝑓 𝑥 and (𝑦, 𝑓 𝑦) above 𝑓.

2. Tangent line at 𝑥 (slope 𝑓′(𝑥)) below 𝑓.

3. 𝑓′′ 𝑥 > 0 for all 𝑥

𝑥 𝑦

𝑓

CLAIM: If f above x, 𝑓 𝑥 − (𝑦, 𝑓 𝑦) then exists 𝑧 with tangent line at 𝑧 above 𝑓

Proof by picture:

Gradient Descent

𝑥𝑡 𝑦

𝑓

𝑥𝑡+1

𝑥𝑡+1 = 𝑥𝑡 − 𝜂𝑓′(𝑥𝑡)

𝑓 𝑥𝑡 + 𝛿 ≈ 𝑓 𝑥𝑡 + 𝛿𝑓′ 𝑥𝑡 +
𝛿2

2
𝑓′′ 𝑥𝑡

𝑓 𝑥𝑡+1 ≈ 𝑓 𝑥𝑡 − 𝜂𝑓′ 𝑥𝑡
2 +

𝜂2𝑓′ 𝑥𝑡
2

2
𝑓′′ 𝑥𝑡

• If 𝜂 < 2/𝑓′′(𝑥𝑡) then make progress

• If 𝜂 ∼ 2/𝑓′′(𝑥𝑡) then drop by ∼ 𝜂𝑓′ 𝑥𝑡
2

Dimension 𝑑:

𝑓′ 𝑥 → ∇𝑓 𝑥 ∈ ℝ𝑑

𝑓′′ 𝑥 → 𝐻𝑓 x = ∇2𝑓 𝑥 ∈ ℝ𝑑×𝑑 (psd)

𝜂 ∼ 1/𝜆𝑑 drop by ∼
𝜆1

𝜆𝑑
∇ 2

= 𝑓 𝑥𝑡 − 𝜂𝑓′ 𝑥𝑡
2(1 −

𝜂𝑓′′ 𝑥𝑡

2
)

Stochastic Gradient Descent

𝑥𝑡 𝑦

𝑓

𝑥𝑡+1

𝑥𝑡+1 = 𝑥𝑡 − 𝜂𝑓′(𝑥𝑡)

𝑓 𝑥𝑡 + 𝛿 ≈ 𝑓 𝑥𝑡 + 𝛿𝑓′ 𝑥𝑡 +
𝛿2

2
𝑓′′ 𝑥𝑡

𝑓 𝑥𝑡+1 ≈ 𝑓 𝑥𝑡 − 𝜂𝑓′ 𝑥𝑡
2 1 −

𝜂𝑓′′ 𝑥𝑡

2
+ 𝜂2𝜎2𝑓′′(𝑥𝑡)

• If 𝜂 < 2/𝑓′′(𝑥𝑡) and (*) 𝜂𝜎2 ≪ 𝑓′ 𝑥𝑡
2/𝑓′′(𝑥) then make progress

• If 𝜂 ∼ 2/𝑓′′(𝑥𝑡) and (*) then drop by ∼ 𝜂𝑓′ 𝑥𝑡
2

𝔼 𝑓′ 𝑥 = 𝑓′(𝑥𝑡), 𝑉 𝑓′ 𝑥 = 𝜎2

Assume 𝑓′ 𝑥 = 𝑓′ 𝑥 + 𝑁

Mean 0
Variance 𝜎2

Independent

In Machine Learning:

𝑓 𝑥 =
1

𝑛
σ𝑖=1
𝑛 𝐿𝑖(𝑥)

𝑓′ 𝑥𝑡 = 𝐿𝑖′(𝑥) for 𝑖 ∼ [𝑛]

Part II: Generalization

Distribution (𝑋, 𝑌) over 𝒳 × {±1}

Supervised learning

Learning

Algorithm

𝐴
data

S = 𝑥𝑖 , 𝑦𝑖 𝑖=1..𝑛

𝑓 ∈ ℱ

ℒ 𝑓 = Pr[𝑓 𝑋 ≠ 𝑌] መℒ𝑆 𝑓 =
1

𝑛
σ𝑖=1
𝑛 1𝑓 𝑥𝑖 ≠𝑦𝑖

Population 0-1 loss Empirical 0-1 loss

Generalization gap: ℒ 𝑓 − መℒ𝑆(𝑓) for 𝑓 = 𝐴(𝑆)

Empirical Risk Minimization (ERM):

𝐴 𝑆 = argmin
𝑓∈ℱ

መℒ𝑆(𝑓)

Bias Variance Tradeoff
Learning

Algorithm

𝐴
S = 𝑥𝑖 , 𝑦𝑖 𝑖=1..𝑛 𝑓 ∈ ℱ

Empirical Risk Minimization (ERM):

𝐴 𝑆 = argmin
𝑓∈ℱ

መℒ𝑆(𝑓)

ℒ 𝑓 = Pr[𝑓 𝑋 ≠ 𝑌] መℒ𝑆 𝑓 =
1

𝑛
σ𝑖=1
𝑛 1𝑓 𝑥𝑖 ≠𝑦𝑖Population 0-1 loss Empirical 0-1 loss

Assume ℱ𝐾 = { 𝑓1, … , 𝑓𝐾} , መℒ 𝑓𝑖 = ℒ 𝑓𝑖 +𝑁(0, 1/𝑛)

𝐾 (log scale)

bias variance

L
o

ss

∼
log 𝐾

𝑛
?

∼ log𝐾 −𝛼 ??

Can prove:

GAP ≤ 𝑂
log |ℱ|

𝑛

Bias Variance Tradeoff
Learning

Algorithm

𝐴
S = 𝑥𝑖 , 𝑦𝑖 𝑖=1..𝑛 𝑓 ∈ ℱ

Empirical Risk Minimization (ERM):

𝐴 𝑆 = argmin
𝑓∈ℱ

መℒ𝑆(𝑓)

ℒ 𝑓 = Pr[𝑓 𝑋 ≠ 𝑌] መℒ𝑆 𝑓 = σ𝑖=1
𝑛 1𝑓 𝑥𝑖 ≠𝑦𝑖

Population 0-1 loss Empirical 0-1 loss

Assume ℱ𝐾 = { 𝑓1, … , 𝑓𝐾} , መℒ 𝑓𝑖 = ℒ 𝑓𝑖 +𝑁(0, 1/𝑛)

𝐾 (log scale)

bias variance

L
o

ss

∼
log 𝐾

𝑛
?

∼ log𝐾 −𝛼 ??

Can prove:

GAP ≤ 𝑂
log |ℱ|

𝑛

Generalization bounds Can prove:

GAP ≤ 𝑂
log |ℱ|

𝑛
log |ℱ| can be replaced with dimensionality / capacity of ℱ

VC dimension:

max 𝑑 s.t. ℱ can fit every labels 𝑦 ∈ ±1 𝑑 on every samples 𝑥1, … , 𝑥𝑑

Rademacher complexity:

max 𝑑 s.t. ℱ can fit random labels 𝑦 ∼ ±1 𝑑 on random 𝑥1, … , 𝑥𝑑 ∼ 𝑋

PAC Bayes:

𝑑 = 𝐼(𝐴 𝑆 ; 𝑆) where 𝑆 is training set.

Margin bounds:

max 𝑑 s.t. linear classifier satisfies 𝑤𝑖 , 𝑥𝑖 𝑦𝑖 > 𝑤𝑖 ⋅ 𝑥𝑖 / 𝑑 for correct predictions

General form: If 𝐶 𝑓 ≪ 𝑛 then መℒ 𝑓 − ℒ 𝑓 ≈ 0

Challenge: Many modern deep nets and natural 𝐶 , 𝐶 𝑓 ≫ 𝑛

Intuition: Can’t “overfit” – if you do well on 𝑛 samples, must do well on population

Hope: Find better 𝐶?

ICLR 2017

General form: If 𝐶 𝑓 ≪ 𝑛 then መℒ 𝑓 − ℒ 𝑓 ≈ 0

Challenge: Many modern deep nets and natural 𝐶 , 𝐶 𝑓 ≫ 𝑛

Intuition: Can’t “overfit” – if you do well on 𝑛 samples, must do well on population

Hope: Find better 𝐶?

Classifier Train Test

Wide ResNet
1

100% 92%

ResNet 182 100% 87%

Myrtle3 100% 86%

Performance on CIFAR-10 Performance on noisy CIFAR-10:*

Train Test

100% 10%

100% 10%

100% 10%

1 Zagoruyko-Komodakis’16 2 He-Zhang-Ren-Sun’15 3 Page ’19

Bansal-Kaplun-B, ICLR 2021

“Double descent”

Belkin, Hsu, Ma, Mandal, PNAS 2019.

Nakkiran-Kaplun-Bansal-Yang-B-Sutskever, ICLR 2020

Example:

Data: (𝑥𝑖 , 𝑓
∗ 𝑥𝑖 + 𝑁) where 𝑓∗ degree 𝑑∗ polynomial

Algorithm: SGD to minimize σ 𝑓 𝑥𝑖 − 𝑦𝑖
2 where 𝑓 ∈ ℱ𝑑=degree 𝑑 polys

Cartoon:

𝑑∗ 𝑛

degree 𝑑 = 𝐶(ℱ)

L
o

ss
/e

rr
o

r

Test

Train

Example:

Data: (𝑥𝑖 , 𝑓
∗ 𝑥𝑖 + 𝑁) where 𝑓∗ degree 𝑑∗ polynomial

Algorithm: SGD to minimize σ 𝑓 𝑥𝑖 − 𝑦𝑖
2 where 𝑓 ∈ ℱ𝑑=degree 𝑑 polys

Example:

Data: (𝑥𝑖 , 𝑓
∗ 𝑥𝑖 + 𝑁) where 𝑓∗ degree 𝑑∗ polynomial

Algorithm: SGD to minimize σ 𝑓 𝑥𝑖 − 𝑦𝑖
2 where 𝑓 ∈ ℱ𝑑=degree 𝑑 polys

Part III: Approximation and
Representation

Hello

Hello

Example:

Example:

Hello

Hello

After Fourier Transform

Linear classifier

Fourier Transform

Every continuous 𝑓: 0,1 → ℝ can be arbitrarily approximated

by 𝑔 of form

𝑔 𝑥 = σ𝛼𝑗𝑒
−2𝜋𝑖 𝛽𝑗𝑥

For some natural data, representation 𝜑 is “nice”

(e.g. sparse, linearly separable,…)

Tasks become simpler after transformation 𝑥 → 𝜑(𝑥)

i.e., 𝑓 ≈ linear in 𝜑1 𝑥 ,… , 𝜑𝑁(𝑥) where 𝜑𝑗 𝑥 = 𝑒−2𝜋𝑖 𝛽𝑗𝑥

𝜑:ℝ → ℝ𝑁 embedding

න
0

1

|𝑓 − 𝑔| < 𝜖

𝜑 𝑥, 𝑦 = (𝑥𝑦, 𝑥2, 𝑦2)

Xavier Bourret Sicotte, https://xavierbourretsicotte.github.io/Kernel_feature_map.html

More approximation

𝑔(𝑥) = σ𝛼𝑖 𝑅𝑒𝐿𝑈(𝛽𝑖𝑥 + 𝛾𝑖)

Proof by picture:

𝑅𝑒𝐿𝑈 𝑥 = max(𝑥, 0)

𝑎 𝑎 + 𝛿

𝑔𝑎 𝑥 = 𝑅𝑒𝐿𝑈(𝑥/𝛿 − 𝑎)

𝑔𝑎+𝛿 𝑥 = 𝑅𝑒𝐿𝑈(𝑥/𝛿 − 𝑎 − 𝛿)

𝑎 𝑎 + 𝛿
0

1

ℎ𝑎 = 𝑔𝑎 − 𝑔𝑎+𝛿 𝐼𝑎,𝑏 = ℎ𝑎 − ℎ𝑏

Every continuous 𝑓: 0,1 → ℝ can be arbitrarily approximated

by 𝑔 of form

𝑎 𝑏

More approximation

𝑔(𝑥) = σ𝛼𝑖 𝑅𝑒𝐿𝑈(𝛽𝑖𝑥 + 𝛾𝑖)

Proof by picture:

𝑅𝑒𝐿𝑈 𝑥 = max(𝑥, 0)

𝐼𝑎,𝑏 = ℎ𝑎 − ℎ𝑏

Every continuous 𝑓: 0,1 → ℝ can be arbitrarily approximated

by 𝑔 of form

𝑓

𝑔

Higher dimension

𝐼(𝑥)

𝐽 1,0 𝑥, 𝑦 = 𝐼 𝑥

𝑟 𝑥 = max(𝛼, 𝑥 + 𝛽, 0) , 𝑑 + 1 parameters

Higher dimension

𝐼(𝑥)

𝐽 1,0 𝑥, 𝑦 = 𝐼 𝑥

𝑟 𝑥 = max(𝛼, 𝑥 + 𝛽, 0) , 𝑑 + 1 parameters

Higher dimension

𝐼(𝑥)

𝑟 𝑥 = max(𝛼, 𝑥 + 𝛽, 0) , 𝑑 + 1 parameters

How many ReLU’s
Every 𝑓: [0,1]𝑑→ ℝ can be approximated as sum of 𝑟𝛼,𝛽 𝑥 = max(𝛼, 𝑥 + 𝛽)

Can discretize ℝ𝑑+1 to 𝑂 1 𝑑 points – need at most 𝑂 1 𝑑 = 2𝑂 𝑑 ReLUs

(For formal proofs, see Cybenko ‘89, Hornik ‘91, Barron ’93; MIT 18.408)

THM: For some 𝑓’s , 2𝑐⋅𝑑 ReLU’s are necessary

0

1 1

1/21/2

Random 𝑓: 0,1 𝑑 → ℝ

Choose 𝑓 𝑥 ∈ {0,1} independently at random

for x ∈ 1/4, 3/4 𝑑

Extend linearly

LEMMA: For every fixed 𝑔: 0,1 𝑑 → ℝ, Pr ∫ 𝑓 − 𝑔 < 0.1 ≤ 2−𝜖⋅2
𝑑

THM: For some 𝑓’s , 2𝑐⋅𝑑 ReLU’s are necessary

0

1 1

1/21/2

Random 𝑓: 0,1 𝑑 → ℝ

Choose 𝑓 𝑥 ∈ {0,1} independently at random

for x ∈ 1/4, 3/4 𝑑

Extend linearly

LEMMA: For every fixed 𝑔: 0,1 𝑑 → ℝ, Pr ∫ 𝑓 − 𝑔 < 0.1 ≤ 2−𝜖⋅2
𝑑

LEMMA ⇒ THEORM: Need 2𝜖⋅2
𝑑

distinct 𝑔’s ⇒ need ≈ 2𝑑 distinct ReLUs

PROOF OF LEMMA:

For 𝑥 ∈ 1/4,3/4 𝑑 let 𝑍𝑥 = 1 iff ∫ 𝑔 𝑦 − 𝑓 𝑦 𝑑𝑦 > 0.2 over y ∈ −1/4,+1/4 𝑑 + 𝑥

Each 𝑍𝑥 is independent with expectation at least 1/2

⇒ Pr[
1

2𝑑
σ𝑍𝑥 < 1/4] ≤ 2−0.1⋅2

𝑑 1

2𝑑
σ𝑍𝑥 ≥ 1/4 ⇒ ∫ 𝑔 − 𝑓 ≥ 1/20

Bottom line

For every* function 𝑓:ℝ𝑑 → ℝ many choices of 𝜑:ℝ𝑑 → ℝ𝑁 s.t.

𝑓 ≈ 𝐿𝑖𝑛𝑒𝑎𝑟𝑓 ∘ 𝜑

Want to find 𝜑 that is useful for many interesting functions 𝑓

useful:

• 𝑁 is not too big

• Efficiently compute 𝜑(𝑥) or ⟨𝜑 𝑥 , 𝜑 𝑦 ⟩

• ⟨𝜑 𝑥 , 𝜑 𝑦 ⟩ large ⇔ 𝑥 and 𝑦 are “semantically similar”

• For interesting 𝑓’s, coefficients of 𝐿𝑖𝑛𝑒𝑎𝑟𝑓 are structured.

• …

Or 𝑓’s such that 𝜓 ∘ 𝑓 interesting for

some non-linear 𝜓:ℝ → ℝ

Part IV: Kernels

Neural Net

𝜑𝑥 𝐿

Kernel

𝜑𝑥 𝐿

Definitely NN Definitely Kernel

𝜑 hand-

crafted

before 1990s

𝜑 trained

end-to-end

for task at

hand

𝜑 pretrained

with same

data

𝜑 pretrained

on different

data

𝜑 pretrained

on synthetic

data

𝜑 hand-

crafted based

on neural

architectures

Kernel methods (intuitively)

Distance measure 𝐾 𝑥, 𝑥′

Input: 𝑥1, 𝑦1 , … , (𝑥𝑛, 𝑦𝑛) s.t. 𝑓∗ 𝑥𝑖 ≈ 𝑦𝑖

To approx 𝑓∗ 𝑥 output 𝑦𝑖 for 𝑥𝑖 closest to 𝑥

or output σ𝛼𝑖𝑦𝑖 with 𝛼𝑖 depending on 𝐾(𝑥, 𝑥𝑖)

Hilbert Space
Linear space: 𝑣 + 𝑢, 𝑐 ⋅ 𝑣

Dot product: 𝑢, 𝑣 + 𝑐 ⋅ 𝑤 = 𝑢, 𝑣 + 𝑐 𝑢,𝑤 , 𝑢, 𝑣 = 𝑣, 𝑢 , 𝑣, 𝑣 ≥ 0

Can solve linear equations of form { 𝑣𝑖 , 𝑥 = 𝑏𝑖 } knowing only ⟨𝑣𝑖 , 𝑣𝑗⟩

Also do least-square minimization min
𝑥

σ(𝑣𝑖 , 𝑥 − 𝑏𝑖)^2 knowing only ⟨𝑣𝑖 , 𝑣𝑗⟩

DEF: Sym matrix 𝐾 ∈ ℝ𝑛×𝑛 is p.s.d. if 𝑣𝑇𝐾𝑣 ≥ 0 for all 𝑣 ∈ ℝ𝑛

Equivalently 𝜆1 𝐾 ,… , 𝜆𝑛 𝐾 ≥ 0

CLAIM: 𝐾 is p.s.d. iff* 𝑢𝑇𝐾𝑣 is inner product

PROOF (⇒): 𝑢𝑇𝐾𝑣 = 𝜓 𝑢 ⋅ 𝜓(𝑣) where 𝜓 𝑢1, … , 𝑢𝑛 = (𝜆1𝑢1, … , 𝜆𝑛𝑢𝑛) , expressed

in eigenbasis

Kernel Methods
Goal: Solve linear equations, least-square minimization, etc. under 𝜑

Observation: Enough to compute K x, x′ = ⟨𝜑 𝑥 , 𝜑 𝑥′ ⟩

Let ො𝑥 = 𝜑(𝑥), given ො𝑥𝑖 , 𝑦𝑖 𝑖=1..𝑛 want to find ෝ𝑤 ∈ ℝ𝑛 s.t. ො𝑥𝑖 , ෝ𝑤 ≈ 𝑦𝑖 ∀𝑖

can compute ෝ𝑤 = σ𝛼𝑖 ො𝑥𝑖 using 𝐾(𝑥𝑖 , 𝑥𝑗)

To compute prediction on new 𝑥 using ෝ𝑤, can compute ො𝑥 = σ𝛽𝑖 ො𝑥𝑖 using 𝐾(𝑥, 𝑥𝑖)

