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What is learning?

𝑓 World



What is learning?

𝑓 World

What is deep learning?



𝑓 World
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God’s view:

f = argmax𝑓 𝔼 (𝑓) data ]

f = argmax𝑓 𝔼[ (𝑓 ↔ 𝑤) ]

𝑤 ∼ 𝑊|data

Perfect A Perfect B ≠ Approx A Approx B



This seminar
• Taste of research results, questions, experiments, and more

• Goal: Get to state of art research:

• Background and language

• Reading and reproducing papers

• Trying out extensions

• Very experimental and “rough around the edges”

• A lot of learning on your own and from each other

• Hope: Very interactive – in lectures and on slack

CS 229br: Survey of very recent research directions, emphasis on experiments

MIT 18.408: Deeper coverage of foundations, emphasis on theory



Student expectations
Not set in stone but will include:

• Pre-reading before lectures

• Scribe notes / blog posts (adding proofs and details)

• Applied problem sets (replicating papers or mini versions thereof, exploring)

Note: Lectures will not teach practical skills – rely on students to pick up using 

suggested tutorials, other resources, and each other.

Unofficial TFs happy to answer questions!

• Some theoretical problem sets.

• Might have you grade each other’s work

• Projects – self chosen and directed.

Grading: We’ll figure out some grade – hope that’s not your loss function ☺

HW0 on 

slack



Rest of today’s lecture:

Blitz through classical learning theory

• Special cases, mostly one dimension

• “Proofs by picture”



Part I: Convexity & Optimization



Convexity

𝑥 𝑦

𝑓
1. Line between x, 𝑓 𝑥 and (𝑦, 𝑓 𝑦 ) above 𝑓.

2. Tangent line at 𝑥 (slope 𝑓′(𝑥) ) below 𝑓.

3. 𝑓′′ 𝑥 > 0 for all 𝑥

CLAIM: 𝑓′′ 𝑥 < 0 implies tangent line at 𝑥 above 𝑓

Proof: 𝑓 𝑥 + 𝛿 = 𝑓 𝑥 + 𝛿𝑓′ 𝑥 + 𝛿2𝑓′′ 𝑥 + 𝑂(𝛿3) implies 𝑓 below line



Convexity

𝑥 𝑦

𝑓
1. Line between x, 𝑓 𝑥 and (𝑦, 𝑓 𝑦 ) above 𝑓.

2. Tangent line at 𝑥 (slope 𝑓′(𝑥) ) below 𝑓.

3. 𝑓′′ 𝑥 > 0 for all 𝑥

𝑥 𝑦

𝑓

CLAIM: If f above x, 𝑓 𝑥 − (𝑦, 𝑓 𝑦 ) then exists 𝑧 with tangent line at 𝑧 above 𝑓

Proof by picture:



Gradient Descent

𝑥𝑡 𝑦

𝑓

𝑥𝑡+1

𝑥𝑡+1 = 𝑥𝑡 − 𝜂𝑓′(𝑥𝑡)

𝑓 𝑥𝑡 + 𝛿 ≈ 𝑓 𝑥𝑡 + 𝛿𝑓′ 𝑥𝑡 +
𝛿2

2
𝑓′′ 𝑥𝑡

𝑓 𝑥𝑡+1 ≈ 𝑓 𝑥𝑡 − 𝜂𝑓′ 𝑥𝑡
2 +

𝜂2𝑓′ 𝑥𝑡
2

2
𝑓′′ 𝑥𝑡

• If 𝜂 < 2/𝑓′′(𝑥𝑡) then make progress 

• If 𝜂 ∼ 2/𝑓′′(𝑥𝑡) then drop by ∼ 𝜂𝑓′ 𝑥𝑡
2

Dimension 𝑑:

𝑓′ 𝑥 → ∇𝑓 𝑥 ∈ ℝ𝑑

𝑓′′ 𝑥 → 𝐻𝑓 x = ∇2𝑓 𝑥 ∈ ℝ𝑑×𝑑 (psd)

𝜂 ∼ 1/𝜆𝑑 drop by ∼
𝜆1

𝜆𝑑
∇ 2

= 𝑓 𝑥𝑡 − 𝜂𝑓′ 𝑥𝑡
2(1 −

𝜂𝑓′′ 𝑥𝑡

2
)



Stochastic Gradient Descent

𝑥𝑡 𝑦

𝑓

𝑥𝑡+1

𝑥𝑡+1 = 𝑥𝑡 − 𝜂෡𝑓′(𝑥𝑡)

𝑓 𝑥𝑡 + 𝛿 ≈ 𝑓 𝑥𝑡 + 𝛿𝑓′ 𝑥𝑡 +
𝛿2

2
𝑓′′ 𝑥𝑡

𝑓 𝑥𝑡+1 ≈ 𝑓 𝑥𝑡 − 𝜂𝑓′ 𝑥𝑡
2 1 −

𝜂𝑓′′ 𝑥𝑡

2
+ 𝜂2𝜎2𝑓′′(𝑥𝑡)

• If 𝜂 < 2/𝑓′′(𝑥𝑡) and  (*) 𝜂𝜎2 ≪ 𝑓′ 𝑥𝑡
2/𝑓′′(𝑥) then make progress 

• If 𝜂 ∼ 2/𝑓′′(𝑥𝑡) and (*) then drop by ∼ 𝜂𝑓′ 𝑥𝑡
2

𝔼 ෡𝑓′ 𝑥 = 𝑓′(𝑥𝑡), 𝑉 ෡𝑓′ 𝑥 = 𝜎2

Assume ෡𝑓′ 𝑥 = 𝑓′ 𝑥 + 𝑁

Mean 0
Variance 𝜎2

Independent

In Machine Learning: 

𝑓 𝑥 =
1

𝑛
σ𝑖=1
𝑛 𝐿𝑖(𝑥)

෡𝑓′ 𝑥𝑡 = 𝐿𝑖′(𝑥) for 𝑖 ∼ [𝑛]



Part II: Generalization



Distribution (𝑋, 𝑌) over 𝒳 × {±1}

Supervised learning

Learning 

Algorithm

𝐴
data

S = 𝑥𝑖 , 𝑦𝑖 𝑖=1..𝑛

𝑓 ∈ ℱ

ℒ 𝑓 = Pr[𝑓 𝑋 ≠ 𝑌] መℒ𝑆 𝑓 =
1

𝑛
σ𝑖=1
𝑛 1𝑓 𝑥𝑖 ≠𝑦𝑖

Population 0-1 loss Empirical 0-1 loss

Generalization gap: ℒ 𝑓 − መℒ𝑆(𝑓) for 𝑓 = 𝐴(𝑆)

Empirical Risk Minimization (ERM):

𝐴 𝑆 = argmin
𝑓∈ℱ

መℒ𝑆(𝑓)



Bias Variance Tradeoff
Learning 

Algorithm

𝐴
S = 𝑥𝑖 , 𝑦𝑖 𝑖=1..𝑛 𝑓 ∈ ℱ

Empirical Risk Minimization (ERM):

𝐴 𝑆 = argmin
𝑓∈ℱ

መℒ𝑆(𝑓)

ℒ 𝑓 = Pr[𝑓 𝑋 ≠ 𝑌] መℒ𝑆 𝑓 =
1

𝑛
σ𝑖=1
𝑛 1𝑓 𝑥𝑖 ≠𝑦𝑖Population 0-1 loss Empirical 0-1 loss

Assume ℱ𝐾 = { 𝑓1, … , 𝑓𝐾} , መℒ 𝑓𝑖 = ℒ 𝑓𝑖 +𝑁(0, 1/𝑛)

𝐾 (log scale)

bias variance

L
o

ss

∼
log 𝐾

𝑛
? 

∼ log𝐾 −𝛼 ?? 

Can prove:

GAP ≤ 𝑂
log |ℱ|

𝑛



Bias Variance Tradeoff
Learning 

Algorithm

𝐴
S = 𝑥𝑖 , 𝑦𝑖 𝑖=1..𝑛 𝑓 ∈ ℱ

Empirical Risk Minimization (ERM):

𝐴 𝑆 = argmin
𝑓∈ℱ

መℒ𝑆(𝑓)

ℒ 𝑓 = Pr[𝑓 𝑋 ≠ 𝑌] መℒ𝑆 𝑓 = σ𝑖=1
𝑛 1𝑓 𝑥𝑖 ≠𝑦𝑖

Population 0-1 loss Empirical 0-1 loss

Assume ℱ𝐾 = { 𝑓1, … , 𝑓𝐾} , መℒ 𝑓𝑖 = ℒ 𝑓𝑖 +𝑁(0, 1/𝑛)

𝐾 (log scale)

bias variance

L
o

ss

∼
log 𝐾

𝑛
? 

∼ log𝐾 −𝛼 ?? 

Can prove:

GAP ≤ 𝑂
log |ℱ|

𝑛



Generalization bounds Can prove:

GAP ≤ 𝑂
log |ℱ|

𝑛
log |ℱ| can be replaced with dimensionality / capacity of ℱ

VC dimension:  

max 𝑑 s.t. ℱ can fit every labels 𝑦 ∈ ±1 𝑑 on every samples 𝑥1, … , 𝑥𝑑

Rademacher complexity:

max 𝑑 s.t. ℱ can fit random labels 𝑦 ∼ ±1 𝑑 on random 𝑥1, … , 𝑥𝑑 ∼ 𝑋

PAC Bayes:

𝑑 = 𝐼(𝐴 𝑆 ; 𝑆) where 𝑆 is training set.

Margin bounds:

max 𝑑 s.t. linear classifier satisfies 𝑤𝑖 , 𝑥𝑖 𝑦𝑖 > 𝑤𝑖 ⋅ 𝑥𝑖 / 𝑑 for correct predictions



General form: If 𝐶 𝑓 ≪ 𝑛 then መℒ 𝑓 − ℒ 𝑓 ≈ 0

Challenge: Many modern deep nets and natural 𝐶 , 𝐶 𝑓 ≫ 𝑛

Intuition: Can’t “overfit” – if you do well on 𝑛 samples, must do well on population

Hope: Find better 𝐶? 

ICLR 2017



General form: If 𝐶 𝑓 ≪ 𝑛 then መℒ 𝑓 − ℒ 𝑓 ≈ 0

Challenge: Many modern deep nets and natural 𝐶 , 𝐶 𝑓 ≫ 𝑛

Intuition: Can’t “overfit” – if you do well on 𝑛 samples, must do well on population

Hope: Find better 𝐶? 

Classifier Train Test

Wide ResNet
1

100% 92%

ResNet 182 100% 87%

Myrtle3 100% 86%

Performance on CIFAR-10 Performance on noisy CIFAR-10:*

Train Test

100% 10%

100% 10%

100% 10%

1 Zagoruyko-Komodakis’16 2 He-Zhang-Ren-Sun’15 3 Page ’19



Bansal-Kaplun-B, ICLR 2021



“Double descent”

Belkin, Hsu, Ma, Mandal, PNAS 2019. 

Nakkiran-Kaplun-Bansal-Yang-B-Sutskever, ICLR 2020



Example:

Data: (𝑥𝑖 , 𝑓
∗ 𝑥𝑖 + 𝑁) where 𝑓∗ degree 𝑑∗ polynomial

Algorithm: SGD to minimize σ 𝑓 𝑥𝑖 − 𝑦𝑖
2 where 𝑓 ∈ ℱ𝑑=degree 𝑑 polys

Cartoon:

𝑑∗ 𝑛

degree 𝑑 = 𝐶(ℱ)

L
o

ss
/e

rr
o

r

Test

Train



Example:

Data: (𝑥𝑖 , 𝑓
∗ 𝑥𝑖 + 𝑁) where 𝑓∗ degree 𝑑∗ polynomial

Algorithm: SGD to minimize σ 𝑓 𝑥𝑖 − 𝑦𝑖
2 where 𝑓 ∈ ℱ𝑑=degree 𝑑 polys



Example:

Data: (𝑥𝑖 , 𝑓
∗ 𝑥𝑖 + 𝑁) where 𝑓∗ degree 𝑑∗ polynomial

Algorithm: SGD to minimize σ 𝑓 𝑥𝑖 − 𝑦𝑖
2 where 𝑓 ∈ ℱ𝑑=degree 𝑑 polys



Part III: Approximation and 
Representation



Hello

Hello

Example:



Example:

Hello

Hello

After Fourier Transform

Linear classifier



Fourier Transform

Every continuous 𝑓: 0,1 → ℝ can be arbitrarily approximated 

by 𝑔 of form

𝑔 𝑥 = σ𝛼𝑗𝑒
−2𝜋𝑖 𝛽𝑗𝑥

For some natural data,  representation 𝜑 is “nice”

(e.g. sparse, linearly separable,…)

Tasks become simpler after transformation 𝑥 → 𝜑(𝑥)

i.e., 𝑓 ≈ linear in 𝜑1 𝑥 ,… , 𝜑𝑁(𝑥) where 𝜑𝑗 𝑥 = 𝑒−2𝜋𝑖 𝛽𝑗𝑥

𝜑:ℝ → ℝ𝑁 embedding

න
0

1

|𝑓 − 𝑔| < 𝜖



𝜑 𝑥, 𝑦 = (𝑥𝑦, 𝑥2, 𝑦2)

Xavier Bourret Sicotte, https://xavierbourretsicotte.github.io/Kernel_feature_map.html



More approximation

𝑔(𝑥) = σ𝛼𝑖 𝑅𝑒𝐿𝑈(𝛽𝑖𝑥 + 𝛾𝑖)

Proof by picture:

𝑅𝑒𝐿𝑈 𝑥 = max(𝑥, 0)

𝑎 𝑎 + 𝛿

𝑔𝑎 𝑥 = 𝑅𝑒𝐿𝑈(𝑥/𝛿 − 𝑎)

𝑔𝑎+𝛿 𝑥 = 𝑅𝑒𝐿𝑈(𝑥/𝛿 − 𝑎 − 𝛿)

𝑎 𝑎 + 𝛿
0

1

ℎ𝑎 = 𝑔𝑎 − 𝑔𝑎+𝛿 𝐼𝑎,𝑏 = ℎ𝑎 − ℎ𝑏

Every continuous 𝑓: 0,1 → ℝ can be arbitrarily approximated 

by 𝑔 of form

𝑎 𝑏



More approximation

𝑔(𝑥) = σ𝛼𝑖 𝑅𝑒𝐿𝑈(𝛽𝑖𝑥 + 𝛾𝑖)

Proof by picture:

𝑅𝑒𝐿𝑈 𝑥 = max(𝑥, 0)

𝐼𝑎,𝑏 = ℎ𝑎 − ℎ𝑏

Every continuous 𝑓: 0,1 → ℝ can be arbitrarily approximated 

by 𝑔 of form

𝑓

𝑔



Higher dimension

𝐼(𝑥)

𝐽 1,0 𝑥, 𝑦 = 𝐼 𝑥

𝑟 𝑥 = max( 𝛼, 𝑥 + 𝛽, 0) , 𝑑 + 1 parameters



Higher dimension

𝐼(𝑥)

𝐽 1,0 𝑥, 𝑦 = 𝐼 𝑥

𝑟 𝑥 = max( 𝛼, 𝑥 + 𝛽, 0) , 𝑑 + 1 parameters



Higher dimension

𝐼(𝑥)

𝑟 𝑥 = max( 𝛼, 𝑥 + 𝛽, 0) , 𝑑 + 1 parameters



How many ReLU’s
Every 𝑓: [0,1]𝑑→ ℝ can be approximated as sum of 𝑟𝛼,𝛽 𝑥 = max( 𝛼, 𝑥 + 𝛽)

Can discretize ℝ𝑑+1 to 𝑂 1 𝑑 points – need at most 𝑂 1 𝑑 = 2𝑂 𝑑 ReLUs

(For formal proofs, see Cybenko ‘89, Hornik ‘91, Barron ’93; MIT 18.408)

THM: For some 𝑓’s , 2𝑐⋅𝑑 ReLU’s are necessary

0

1 1

1/21/2

Random 𝑓: 0,1 𝑑 → ℝ

Choose 𝑓 𝑥 ∈ {0,1} independently at random 

for x ∈ 1/4, 3/4 𝑑

Extend linearly

LEMMA: For every fixed 𝑔: 0,1 𝑑 → ℝ, Pr ∫ 𝑓 − 𝑔 < 0.1 ≤ 2−𝜖⋅2
𝑑



THM: For some 𝑓’s , 2𝑐⋅𝑑 ReLU’s are necessary

0

1 1

1/21/2

Random 𝑓: 0,1 𝑑 → ℝ

Choose 𝑓 𝑥 ∈ {0,1} independently at random 

for x ∈ 1/4, 3/4 𝑑

Extend linearly

LEMMA: For every fixed 𝑔: 0,1 𝑑 → ℝ, Pr ∫ 𝑓 − 𝑔 < 0.1 ≤ 2−𝜖⋅2
𝑑

LEMMA ⇒ THEORM: Need 2𝜖⋅2
𝑑

distinct 𝑔’s ⇒ need ≈ 2𝑑 distinct ReLUs

PROOF OF LEMMA: 

For 𝑥 ∈ 1/4,3/4 𝑑 let 𝑍𝑥 = 1 iff ∫ 𝑔 𝑦 − 𝑓 𝑦 𝑑𝑦 > 0.2 over y ∈ −1/4,+1/4 𝑑 + 𝑥

Each 𝑍𝑥 is independent with expectation at least 1/2

⇒ Pr[
1

2𝑑
σ𝑍𝑥 < 1/4 ] ≤ 2−0.1⋅2

𝑑 1

2𝑑
σ𝑍𝑥 ≥ 1/4 ⇒ ∫ 𝑔 − 𝑓 ≥ 1/20



Bottom line

For every* function 𝑓:ℝ𝑑 → ℝ many choices of 𝜑:ℝ𝑑 → ℝ𝑁 s.t.

𝑓 ≈ 𝐿𝑖𝑛𝑒𝑎𝑟𝑓 ∘ 𝜑

Want to find 𝜑 that is useful for many interesting functions 𝑓

useful:

• 𝑁 is not too big

• Efficiently compute 𝜑(𝑥) or ⟨𝜑 𝑥 , 𝜑 𝑦 ⟩

• ⟨𝜑 𝑥 , 𝜑 𝑦 ⟩ large ⇔ 𝑥 and 𝑦 are “semantically similar”

• For interesting 𝑓’s, coefficients of 𝐿𝑖𝑛𝑒𝑎𝑟𝑓 are structured.

• …

Or 𝑓’s such that 𝜓 ∘ 𝑓 interesting for 

some non-linear 𝜓:ℝ → ℝ



Part IV: Kernels



Neural Net

𝜑𝑥 𝐿

Kernel

𝜑𝑥 𝐿

Definitely NN Definitely Kernel

𝜑 hand-

crafted 

before 1990s

𝜑 trained 

end-to-end 

for task at 

hand

𝜑 pretrained 

with same 

data

𝜑 pretrained 

on different 

data

𝜑 pretrained 

on synthetic 

data

𝜑 hand-

crafted based 

on neural 

architectures



Kernel methods (intuitively)

Distance measure 𝐾 𝑥, 𝑥′

Input: 𝑥1, 𝑦1 , … , (𝑥𝑛, 𝑦𝑛) s.t. 𝑓∗ 𝑥𝑖 ≈ 𝑦𝑖

To approx 𝑓∗ 𝑥 output 𝑦𝑖 for 𝑥𝑖 closest to 𝑥

or output σ𝛼𝑖𝑦𝑖 with 𝛼𝑖 depending on 𝐾(𝑥, 𝑥𝑖)



Hilbert Space
Linear space: 𝑣 + 𝑢, 𝑐 ⋅ 𝑣

Dot product: 𝑢, 𝑣 + 𝑐 ⋅ 𝑤 = 𝑢, 𝑣 + 𝑐 𝑢,𝑤 , 𝑢, 𝑣 = 𝑣, 𝑢 , 𝑣, 𝑣 ≥ 0

Can solve linear equations of form { 𝑣𝑖 , 𝑥 = 𝑏𝑖 } knowing only ⟨𝑣𝑖 , 𝑣𝑗⟩

Also do least-square minimization min
𝑥

σ( 𝑣𝑖 , 𝑥 − 𝑏𝑖)^2 knowing only ⟨𝑣𝑖 , 𝑣𝑗⟩

DEF: Sym matrix 𝐾 ∈ ℝ𝑛×𝑛 is p.s.d. if 𝑣𝑇𝐾𝑣 ≥ 0 for all 𝑣 ∈ ℝ𝑛

Equivalently 𝜆1 𝐾 ,… , 𝜆𝑛 𝐾 ≥ 0

CLAIM: 𝐾 is p.s.d. iff* 𝑢𝑇𝐾𝑣 is inner product

PROOF (⇒): 𝑢𝑇𝐾𝑣 = 𝜓 𝑢 ⋅ 𝜓(𝑣) where 𝜓 𝑢1, … , 𝑢𝑛 = ( 𝜆1𝑢1, … , 𝜆𝑛𝑢𝑛) , expressed 

in eigenbasis



Kernel Methods
Goal: Solve linear equations, least-square minimization, etc. under 𝜑

Observation: Enough to compute K x, x′ = ⟨𝜑 𝑥 , 𝜑 𝑥′ ⟩

Let ො𝑥 = 𝜑(𝑥), given ො𝑥𝑖 , 𝑦𝑖 𝑖=1..𝑛 want to find ෝ𝑤 ∈ ℝ𝑛 s.t. ො𝑥𝑖 , ෝ𝑤 ≈ 𝑦𝑖 ∀𝑖

can compute ෝ𝑤 = σ𝛼𝑖 ො𝑥𝑖 using 𝐾(𝑥𝑖 , 𝑥𝑗)

To compute prediction on new 𝑥 using ෝ𝑤, can compute ො𝑥 = σ𝛽𝑖 ො𝑥𝑖 using 𝐾(𝑥, 𝑥𝑖)




