CS 229br: Advanced Topics in the
theory of machine learning

Boaz Barak

Ankur Moitra ~ Yamini Bansal ~ Dimitris Kalimeris ~ Gal Kaplun ~ Preetum Nakkiran
MIT 18.408 Official TF Unofficial TF Unofficial T Unofficial TF

¢ Join slack team and sign in on your devices!

What is learning?

(1)<=

World

=

O\
A4

h

)

What is learning

Bl B oo mon oo o o S O
£
-
Q

::: @)
O
-H ~

@ -S O(N) -1t
®)
O
0(m)—-@
functions Nets programs

(aka Turing machines)
Power of class

What is deep learning?

OOD, domain shift, >
. . rObUStneSS, fairnessl .

;d‘@OPT =) t‘ @ | L |:>R
[data]

OOD, domain shift,)
robustness, fairness, .. =% :

~ § 1|
®<:::> World ﬁ ‘ @<:::> Benchmark @

l'l./"‘"\.

Generalization,..
R <D

data|—> OPT

... < OOD'domainshifD GOd'S \/ie\/\/:
3 E.. . robustness, fairness, ..

. N 100 | |
(O | word ﬁ # O |wamr| I - f=argmax; E[(&)(f) | data]

f = argmax; [Ef &) (f ow)]
w ~ W|data

Perfect A |:> Perfect B 7= Approx A |:> Approx B

This seminar

» Taste of research results, questions, experiments, and more

* Goal: Get to state of art research:
e Background and language
» Reading and reproducing papers
* Trying out extensions

* Very experimental and “rough around the edges”
* Alot of learning on your own and from each other

* Hope: Very interactive — in lectures and on slack

CS 229br: Survey of very recent research directions, emphasis on experiments

MIT 18.408: Deeper coverage of foundations, emphasis on theory

Student expectations

Not set in stone but will include:
* Pre-reading before lectures
« Scribe notes / blog posts (adding proofs and details)

* Applied problem sets (replicating papers or mini versions thereof, exploring)
Note: Lectures will not teach practical skills — rely on students to pick up using
suggested tutorials, other resources, and each other.

Unofficial TFs happy to answer questions! HWO on
slack

* Some theoretical problem sets.

« Might have you grade each other’s work
* Projects — self chosen and directed.

Grading: We'll figure out some grade — hope that's not your loss function ©

Rest of today’s lecture:

Blitz through classical learning theory

 Special cases, mostly one dimension

* “Proofs by picture”

PATTERNS, PREDICTIONS, AND ACTIONS

UNDERSTAND'NG A story about machine learning

MACHINE
LEARNING

Moritz Hardt and Benjamin Recht

Part | Convexity & Optimization

Convexity

1. Line between (x, f(x)) and (y, f()) above f.

2. Tangent line at x (slope f'(x)) below f.
3. f"(x)>0forall x ¥

CLAIM: f"(x) < 0 implies tangent line at x above f

Proof: f(x +6) = f(x) + §f'(x) + §%f"" (x) + 0(63) implies f below line

Convexity

1. Line between (x, f(x)) and (y, f()) above f.
2. Tangent line at x (slope f'(x)) below f.

3. f"(x)>0forall x ¥ .

CLAIM: If f above (x, f(x)) — (v, f(v)) then exists z with tangent line at z above f

Proof by picture:

Gradient Descent

Dimension d:
f'(x) - Vf(x) € R?
") = Hp(x) = V,f (x) € R¥*? (psd)

Xerq1 = X¢ —Nf (x¢) n ~ 1/, drop by ~ j{_; 1V]|2
Xt Xt+1 y

52
flxe +6) = f(xe) +6f (xg) + Tf”(xt)

fleeen) = fOe) = nf (e)? + TLEE £ = fla) = nf " (e)? (1 — 520

e Ifn <2/f"(x;) then make progress

e Ifn~2/f"(x;) then drop by ~ nf'(x;)*

Stochastic Gradient Defisesteeme

Xesr = Xe — 1f (%) f(x)—lz 1 Li(x)
’ q'f (x;) =L;'(x) fori ~
E[f' ()] = f'(xe). V[f' ()] = o2 !I\/Iean
Variance ¢? L /
Assume f'(x) = f'(x) + N Independent

Xt Xt+1
52
flxe +6) = flxe) +8f (xg) + Tf”(xt)
fFean) = FGr) = nf'0e)? (1= 282) + 02027 (x,)

e Ifn<2/f"(x)and (*)no? < f'(x.)*/f"(x) then make progress
e Ifn~2/f"(x;) and (*) then drop by ~ nf'(x;)?

Part |l: Generalization

S U pe I”Vi Sed ‘ea 1) | ﬂg Empirical Risk Minimization (ERM):
A(S) = argmin Ls(f)

Distribution (X,Y) over X x {+1}

FEF
S = (X, Yi)i=1.n .
Learning
‘ data ‘ |:> Algorithm |:> @

A

L(f) = Pr[f(X) # Y] Ls(f) = =2y Lxpey,
Population 0-1 loss Empirical 0-1 loss

Generalization gap: L(f) — Ls(f) for f = A(S)

rad eO]C]C Empirical Risk Minimization (ERM):
<= A(S) = argmin Ls(f)

Learning S
S = (X Y izt.n |:> Algorithrm
il N,
Population 0-1 loss L(f) = Pr[f(X) # Y] ! bias Imp! var |ance ss Ls(f) = —Zl 1 L=y,

Assume Fy = { fi, ..., fx} . L(f;) = L(f;) + N(0,1/n)

Blas Variance

1 Can prove:
~ [28K 5
n GAP < 0(o8 'T'>

n

Loss

~ (logK)~¢ ??

K (log scale)

B|a S . ipirical Risk Minimization (ERM):
under-fitting . over-fitting A(S) = arg min ﬁS(f)

. Test risk fer
S=x ;
N Z
_ ~ o ‘Training risk A
Populatic sweet spot_ v~ _ _ |mwiance |55 Ls(f) = Xiz1 L2y,
Capacity of
Assume"n CJL? """ 2 JRD T ~N\JL/ ~\JL/ "\v'*/n)
Can prove:
N log K 5
n GAP < 0(o8 'T'>
9] n
%)
)
—

~ (logK)~¢ ??

K (log scale)

Generalization bounds Can prove:
GAPSO(‘Og'f'>

n

log |F| can be replaced with dimensionality / capacity of F

VC dimension:
max d s.t. F can fit every labels y € {+1}% on every samples x, ..., x4

Rademacher complexity:
max d s.t. F can fit random labels y ~ {+1}? on random x4, ...,x; ~ X

PAC Bayes:
d = I1(A(S);S) where S is training set.

Margin bounds:
max d s.t. linear classifier satisfies (w;, x;)y; > ||[w;|| - ||x;||/v/d for correct predictions

General form: ¢ « nthen 2(F) — £(f) ~ 0

Intuition: Can't “overfit” — if you do well on n samples, must do well on population

Challenge: Many modern deep nets and natural €, C(f) > n
Hope: Find better C?

UNDERSTANDING DEEP LEARNING REQUIRES RE-
THINKING GENERALIZATION

Chiyuan Lhang” Samy Bengio Moritz Hardt
Massachusetts Institute of Technology Google Brain Google Brain
chiyuan@mit.edu bengio@google. com mrtz@google . com
Benjamin Recht’ Oriol Vinyals

University of California, Berkeley Google DeepMind

brecht@berkeley.edu vinyals@google. com |C|_R 2017

General form: ¢ « nthen 2(F) — £(f) ~ 0

Intuition: Can't “overfit” — if you do well on n samples, must do well on population

Challenge: Many modern deep nets and natural €, C(f) > n
Hope: Find better C?

Performance on CIFAR-10 Performance on noisy CIFAR-10:"
Classifier Train Test Train Test
Wide ResNet | 100% 92% 100% 10%
ResNet 18 100% 87% 100% 10%
Myrtle® 100% 86% 100% 10%

1 Zagoruyko-Komodakis'16 > He-Zhang-Ren-Sun’15 3 Page 19

Generalization gap (noise = 0.00)
End-to-end Supervision

100 | { l ® Tt
80
60
40
20

0
ResNet 18 Wide ResNet ConvNet

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Bansal-Kaplun-B, ICLR 2021

"Double descent”

over-parameterized

under-parameterized

Test risk

“classical”
regime

“modern”
interpolating regime

-~ Training risk:

- . _interpolation threshold

—

— — m— — — E— E— E—— E— E— E— E—

Capg,city of H

Belkin, Hsu, Ma, Mandal, PNAS 2019.

Classical Regime:; Modern Regime:
Bias-'u"arianc:i Tradeoff Larger Model is Better
A 000000000000 .
[R VA

I
_ 05 : — Test
o 1 Train
t I
w 0.4 \ |
= '
m 0.3 ! I -
| . % i
- N Interpolation
—0.2 A\ f Threshold
7 |
m \
0.1 ‘:

Il M

D.O 1 —B S o o o o e
1 10 20 30 40 50 60

ResNetl8 width parameter

Nakkiran-Kaplun-Bansal-Yang-B-Sutskever, ICLR 2020

Example:
Data: (x;, f*(x;) + N) where f* degree d* polynomial

Algorithm: SGD to minimize Y.(f (x;) — y;)* where f € F,=degree d polys
Cartoon:
Test

rain

Loss/error

degree d = C(F)

Example:
Data: (x;, f*(x;) + N) where f* degree d* polynomial

Algorithm: SGD to minimize Y.(f (x;) — y;)* where f € F,=degree d polys

Example:
Data: (x;, f*(x;) + N) where f* degree d* polynomial

Algorithm: SGD to minimize Y.(f (x;) — y;)* where f € F,=degree d polys

140 1
0.8

06 ¥

0.4 4

0.0

—0.2 1
T

Part [l Approximation ana
Representation

Example:

After Fourier Transform

5% classifier ‘

Fourier Transform f|f_g| <e

Every continuous f:[0,1] — R can be arbitrarily approximated

by g of form |
g(x) = Yaje " i

e, f = linearin @;(x), ..., py(x) where ¢;(x) = e=2™ Bjx

¢: R - R" embedding

For some natural data, representation ¢ is “nice”
(e.q. sparse, linearly separable,...)

Tasks become simpler after transformation x — ¢(x)

X2

1.0

0.5

oo

-1.0

Criginal data

] L
. L]
.
L]
L]
[]
L
.
.
[]
™
.
.
L]
L]
.]
.
L]
* @
[]
-1.0 0.5 Qo

Transformed data:
[]
. % ~ 100
]
* e ~ 075
. .
:' .o o ~ 050
-’ i P
; o Py * - . ¥ 025-
L] < -~ N
. A . 4 “ . ~ Q00
- L k) ™
- . -
8 - *e * ~-025
® ~ 050
L
~ 075
™ b [] ~ 12
~ 10
2 A ~ 08
-07%50.025 = 2 as ¥
O00025 G4
3 Owon
100 02

1.0

o(x,y) = (xy,x%,y2)

Xavier Bourret Sicotte, https://xavierbourretsicotte.github.io/Kernel_feature_map.html

More approximation | ReLU(x) = max(x, 0)

Every continuous f:[0,1] — R can be arbitrarily approximated
by g of form g(x) =xa; ReLU(Bix +v;)

Proof by picture:
gqa(x) = ReLU(x/6 — a)

h, =g, — L. —h —h
ga+5(x) — RBLU(X/5 —a— 5) a Ya Ja+s a,b a b

L/

a a+o a a+o a b

More approximation | ReLU(x) = max(x, 0)

Every continuous f:[0,1] — R can be arbitrarily approximated
by g of form g(x) =xa; ReLU(Bix +v;)

Proof by picture:

Ia,b = hg — hy

ng her dimension &) = max({a,x)+f,0), d + 1 parameters

I(x)

J(1,0) (x,y) = 1(x)

ng her dimension &) = max({a,x)+f,0), d + 1 parameters

I(x)

J(1,0) (x,y) = 1(x)

ng her dimension &) = max({a,x)+f,0), d + 1 parameters

I(x)

How many RelLU's

Every f:[0,1]— R can be approximated as sum of r,, z(x) = max({(a,x) +)

Can discretize RZ*! to 0(1)% points — need at most 0(1)¢ = 29(4) RelLUs

(For formal proofs, see Cybenko ‘89, Hornik ‘91, Barron '93; MIT 18.408)

THM: For some f's, 2% ReLU’s are necessary

Random £:[0,1]¢ —» R

Choose f(x) € {0,1} independently at random
forx € {1/4,3/4 }¢ 1

Extend linearly

LEMMA: For every fixed g:[0,1]¢ - R, Pr| [|f — g| < 0.1] < 27¢%

THM: For some f's, 2% RelLU’s are necessary

Random f:[0,1]¢ - R

Choose f(x) € {0,1} independently at random
forx € {1/4,3/4 }4

Extend linearly

LEMMA: For every fixed g:[0,1]2 > R, Pr| [|[f —g| < 0.1] < 7—e:2%
LEMMA = THEORM: Need 2¢2“ distinct g's = need ~ 2 distinct ReLUs

PROOF OF LEMMA:
Forx € {1/4,3/4}¢ let Z, = 1iff [|g(y) — f(y)|dy > 0.2 overy € [—1/4,+1/4]¢ + x

Each Z, is independent with expectation at least 1/2

1 1
= Prlg X2, <1/4] < 2—0.1:2° ~axZx 21/4 = [1g — f| 2 1/20 B

Bottom line

For every* function f: R - R many choices of ¢: R - R” s.t.
f = Lineary o ¢

Want to find ¢ that is useful for many interesting functions f

N

. Or f's such that Y o f interesting for
useful: some non-linear Y: R - R

* N is not too big
 Efficiently compute ¢ (x) or (p(x), p(v))

 (p(x),p(y)) large & x and y are "semantically similar”
 For interesting f’s, coefficients of Lineary are structured.

Part [V: Kernels

Neural Net

Definitely NN

/
\

— Definitely Kernel

Kernel

/
\

@ pretrained
with same
data

@ pretrained
on different
data

@ pretrained
on synthetic
data

Ir

crafted based

¢ hand-

on neural
architectures

Kernel methods (intuitively)

Distance measure K (x, x")
lnpUt: (xll yl)) =ee) (xn: Yn) s.t. f*(xl) ~ Vi
To approx f*(x) output y; for x; closest to x

or output Y «;y; with a; depending on K (x, x;)

Hilbert Space

_Inear space: v+ u, c-v

Dot product: (u, v+ c-w) = (u,v) + c{u,w), (u,v) =(v,u), (v,v) =0
Can solve linear equations of form { (v;, x) = b; } knowing only (v;, v;)
Also do least-square minimization min };({v;, x) — b;)"2 knowing only (v;, v;)
X
DEF: Sym matrix K € R™" is p.s.d. if v’ Kv = 0 for all v € R"
Equivalently 1,(K), ..., 4,,(K) = 0

CLAIM: K is p.s.d. iff* u” Kv is inner product

PROOF (=): u'Kv = ¢y (u) - Y(v) where Y (uy, ..., u,) = (\//'l_lul, ...,\/A_nun) , expressed
In eigenbasis

Kernel Methods

Goal: Solve linear equations, least-square minimization, etc. under ¢

Observation: Enough to compute K(x,x) = (¢ (x), (x"))
Let X = @(x), given {X;, v;}i—1 , wantto find w € R" s.t. (X;, W) = y; Vi
can compute w = Ya; X; using K (x;, x;)

To compute prediction on new x using w, can compute X =)[5; X; using K (x, x;)

