CS 229br: Advanced Topics in the theory of machine learning

HAR

Boaz Barak

Ankur Moitra MIT 18.408

Yamini Bansal **Official TF**

Dimitris Kalimeris Unofficial TF

HAKVARD

Gal Kaplun

Preetum Nakkiran Unofficial TF Unofficial TF

What is deep learning?

God's view: $f = \operatorname{argmax}_{f} \mathbb{E}[\bigoplus(f) \mid data]$ $f = \operatorname{argmax}_{f} \mathbb{E}[\bigoplus(f \leftrightarrow w)]$ $w \sim W \mid data$

This seminar

- Taste of research results, questions, experiments, and more
- Goal: Get to state of art research:
 - Background and language
 - Reading and reproducing papers
 - Trying out extensions
- Very experimental and "rough around the edges"
- A lot of learning on your own and from each other
- Hope: Very interactive in lectures and on slack

CS 229br: Survey of very recent research directions, emphasis on experiments

MIT 18.408: Deeper coverage of foundations, emphasis on theory

Student expectations

- Not set in stone but will include:
- Pre-reading before lectures
- Scribe notes / blog posts (adding proofs and details)
- Applied problem sets (replicating papers or mini versions thereof, exploring) Note: Lectures will not teach practical skills – rely on students to pick up using suggested tutorials, other resources, and each other. Unofficial TFs happy to answer questions!
- Some theoretical problem sets.
- Might have you grade each other's work
- Projects self chosen and directed.

Grading: We'll figure out some grade – hope that's not your loss function 🙂

Rest of today's lecture:

Blitz through classical learning theory

- Special cases, mostly one dimension
- "Proofs by picture"

PATTERNS, PREDICTIONS, AND ACTIONS

A story about machine learning

Moritz Hardt and Benjamin Recht

Part I: Convexity & Optimization

Convexity

- 1. Line between (x, f(x)) and (y, f(y)) above f.
- 2. Tangent line at x (slope f'(x)) below f. 3. f''(x) > 0 for all x

CLAIM: f''(x) < 0 implies tangent line at x above f

Proof: $f(x + \delta) = f(x) + \delta f'(x) + \delta^2 f''(x) + O(\delta^3)$ implies f below line

Convexity

- 1. Line between (x, f(x)) and (y, f(y)) above f.
- 2. Tangent line at x (slope f'(x)) below f.
- 3. f''(x) > 0 for all x

CLAIM: If f above (x, f(x)) - (y, f(y)) then exists z with tangent line at z above f Proof by picture:

Gradient Descent

 $x_{t+1} = x_t - \eta f'(x_t)$

Dimension d: $f'(x) \rightarrow \nabla f(x) \in \mathbb{R}^d$ $f''(x) \rightarrow H_f(x) = \nabla_2 f(x) \in \mathbb{R}^{d \times d} \text{ (psd)}$ $\eta \sim 1/\lambda_d \text{ drop by } \sim \frac{\lambda_1}{\lambda_d} ||\nabla||^2$

Y

$$f(x_t + \delta) \approx f(x_t) + \delta f'(x_t) + \frac{\delta^2}{2} f''(x_t)$$

 $f(x_{t+1}) \approx f(x_t) - \eta f'(x_t)^2 + \frac{\eta^2 f'(x_t)^2}{2} f''(x_t) = f(x_t) - \eta f'(x_t)^2 (1 - \frac{\eta f''(x_t)}{2})$

 $x_t x_{t+1}$

- If $\eta < 2/f''(x_t)$ then make progress
- If $\eta \sim 2/f''(x_t)$ then drop by $\sim \eta f'(x_t)^2$

 $f(x_{t+1}) \approx f(x_t) - \eta f'(x_t)^2 \left(1 - \frac{\eta f''(x_t)}{2}\right) + \eta^2 \sigma^2 f''(x_t)$

- If $\eta < 2/f''(x_t)$ and (*) $\eta \sigma^2 \ll f'(x_t)^2/f''(x)$ then make progress
- If $\eta \sim 2/f''(x_t)$ and (*) then drop by $\sim \eta f'(x_t)^2$

Part II: Generalization

Empirical 0-1 loss

Generalization gap: $\mathcal{L}(f) - \hat{\mathcal{L}}_{S}(f)$ for f = A(S)

K (log scale)

Generalization bounds

 $\log |\mathcal{F}|$ can be replaced with dimensionality / capacity of \mathcal{F}

VC dimension: max d s.t. \mathcal{F} can fit every labels $y \in \{\pm 1\}^d$ on every samples x_1, \dots, x_d

Rademacher complexity: max *d* s.t. \mathcal{F} can fit random labels $y \sim \{\pm 1\}^d$ on random $x_1, \dots, x_d \sim X$

PAC Bayes: d = I(A(S); S) where S is training set.

Margin bounds: max *d* s.t. linear classifier satisfies $\langle w_i, x_i \rangle y_i > ||w_i|| \cdot ||x_i|| / \sqrt{d}$ for correct predictions

General form: If $C(f) \ll n$ then $\hat{\mathcal{L}}(f) - \mathcal{L}(f) \approx 0$

Intuition: Can't "overfit" – if you do well on *n* samples, must do well on population

Challenge: Many modern deep nets and natural C, $C(f) \gg n$ Hope: Find better C?

UNDERSTANDING DEEP LEARNING REQUIRES RE-THINKING GENERALIZATION

Chiyuan Zhang* Massachusetts Institute of Technology chiyuan@mit.edu

Benjamin Recht[†] University of California, Berkeley brecht@berkeley.edu Samy Bengio Google Brain bengio@google.com

Moritz Hardt Google Brain mrtz@google.com

Oriol Vinyals Google DeepMind vinyals@google.com

ICLR 2017

General form: If $C(f) \ll n$ then $\hat{\mathcal{L}}(f) - \mathcal{L}(f) \approx 0$

Intuition: Can't "overfit" – if you do well on *n* samples, must do well on population

Challenge: Many modern deep nets and natural C, $C(f) \gg n$ Hope: Find better C?

Performance on CIFAR-10

Classifier	Train	Test
Wide ResNet ¹	100%	92%
ResNet 18 ²	100%	87%
Myrtle ³	100%	86%

Performance on noisy CIFAR-10:*

Train	Test
100%	10%
100%	10%
100%	10%

¹ Zagoruyko-Komodakis'16 ² He-Zhang-Ren-Sun'15 ³ Page '19

Generalization gap (noise = 0.00)

End-to-end Supervision

1 1

0.8

1

0.9

Bansal-Kaplun-B, ICLR 2021

"Double descent"

Belkin, Hsu, Ma, Mandal, PNAS 2019.

Nakkiran-Kaplun-Bansal-Yang-B-Sutskever, ICLR 2020

Data: $(x_i, f^*(x_i) + N)$ where f^* degree d^* polynomial

Algorithm: SGD to minimize $\sum (f(x_i) - y_i)^2$ where $f \in \mathcal{F}_d$ = degree d polys

degree $d = C(\mathcal{F})$

Data: $(x_i, f^*(x_i) + N)$ where f^* degree d^* polynomial

Algorithm: SGD to minimize $\sum (f(x_i) - y_i)^2$ where $f \in \mathcal{F}_d$ = degree d polys

Data: $(x_i, f^*(x_i) + N)$ where f^* degree d^* polynomial

Algorithm: SGD to minimize $\sum (f(x_i) - y_i)^2$ where $f \in \mathcal{F}_d$ = degree d polys

Part III: Approximation and Representation

After Fourier Transform

Fourier Transform

$$\int_0^1 |f - g| < \epsilon$$

Every continuous $f:[0,1] \rightarrow \mathbb{R}$ can be arbitrarily approximated by g of form

$$g(x) = \sum \alpha_j e^{-2\pi i \beta_j x}$$

i.e., $f \approx \text{linear in } \varphi_1(x), \dots, \varphi_N(x) \text{ where } \varphi_j(x) = e^{-2\pi i \beta_j x}$ $\varphi: \mathbb{R} \to \mathbb{R}^N \text{ embedding}$

For some natural data, representation φ is "nice" (e.g. sparse, linearly separable,...)

Tasks become simpler after transformation $x \rightarrow \varphi(x)$

 $\varphi(x,y) = (xy, x^2, y^2)$

Xavier Bourret Sicotte, https://xavierbourretsicotte.github.io/Kernel_feature_map.html

More approximation

 $ReLU(x) = \max(x, 0)$

Every continuous $f: [0,1] \to \mathbb{R}$ can be arbitrarily approximated by g of form $g(x) = \sum \alpha_i \operatorname{ReLU}(\beta_i x + \gamma_i)$

Proof by picture:

More approximation

Every continuous $f: [0,1] \to \mathbb{R}$ can be arbitrarily approximated by g of form $g(x) = \sum \alpha_i \operatorname{ReLU}(\beta_i x + \gamma_i)$

Proof by picture:

Higher dimension $r(x) = \max(\langle \alpha, x \rangle + \beta, 0)$, d + 1 parameters

$$J_{(1,0)}(x,y) = I(x)$$

Higher dimension $r(x) = \max(\langle \alpha, x \rangle + \beta, 0)$, d + 1 parameters

$$J_{(1,0)}(x,y) = I(x)$$

Higher dimension $r(x) = \max(\langle \alpha, x \rangle + \beta, 0)$, d + 1 parameters

How many ReLU's

Every $f: [0,1]^d \to \mathbb{R}$ can be approximated as sum of $r_{\alpha,\beta}(x) = \max(\langle \alpha, x \rangle + \beta)$

Can discretize \mathbb{R}^{d+1} to $O(1)^d$ points – need at most $O(1)^d = 2^{O(d)}$ ReLUs

(For formal proofs, see Cybenko '89, Hornik '91, Barron '93; MIT 18.408)

THM: For some f's , $2^{c \cdot d}$ ReLU's are necessary

Random $f: [0,1]^d \rightarrow \mathbb{R}$

Choose $f(x) \in \{0,1\}$ independently at random for $x \in \{1/4, 3/4\}^d$

Extend linearly

LEMMA: For every fixed $g: [0,1]^d \to \mathbb{R}$, $\Pr\left[\int |f - g| < 0.1\right] \le 2^{-\epsilon \cdot 2^d}$

THM: For some f's , $2^{c \cdot d}$ ReLU's are necessary

Random $f: [0,1]^d \to \mathbb{R}$

Choose $f(x) \in \{0,1\}$ independently at random for $x \in \{1/4, 3/4\}^d$

Extend linearly

LEMMA: For every fixed $g: [0,1]^d \to \mathbb{R}$, $\Pr\left[\int |f-g| < 0.1\right] \le 2^{-\epsilon \cdot 2^d}$

LEMMA \Rightarrow THEORM: Need $2^{\epsilon \cdot 2^d}$ distinct g's \Rightarrow need $\approx 2^d$ distinct ReLUs

PROOF OF LEMMA: For $x \in \{1/4, 3/4\}^d$ let $Z_x = 1$ iff $\int |g(y) - f(y)| dy > 0.2$ over $y \in [-1/4, +1/4]^d + x$

Each Z_x is independent with expectation at least 1/2 $\Rightarrow \Pr[\frac{1}{2^d}\sum Z_x < 1/4] \le 2^{-0.1 \cdot 2^d}$ $\frac{1}{2^d}\sum Z_x \ge 1/4 \Rightarrow \int |g - f| \ge 1/20$

Bottom line

For every* function $f : \mathbb{R}^d \to \mathbb{R}$ many choices of $\varphi : \mathbb{R}^d \to \mathbb{R}^N$ s.t. $f \approx Linear_f \circ \varphi$

Want to find φ that is useful for many interesting functions f

useful:

Or f's such that $\psi \circ f$ interesting for some non-linear $\psi \colon \mathbb{R} \to \mathbb{R}$

- *N* is not too big
- Efficiently compute $\varphi(x)$ or $\langle \varphi(x), \varphi(y) \rangle$
- $\langle \varphi(x), \varphi(y) \rangle$ large $\Leftrightarrow x$ and y are "semantically similar"
- For interesting *f*'s, coefficients of *Linear*_{*f*} are *structured*.

Part IV: Kernels

Kernel methods (intuitively)

Distance measure K(x, x')

Input: $(x_1, y_1), ..., (x_n, y_n)$ s.t. $f^*(x_i) \approx y_i$

To approx $f^*(x)$ output y_i for x_i closest to x

or output $\sum \alpha_i y_i$ with α_i depending on $K(x, x_i)$

Hilbert Space

Linear space: v + u, $c \cdot v$

Dot product: $\langle u, v + c \cdot w \rangle = \langle u, v \rangle + c \langle u, w \rangle$, $\langle u, v \rangle = \langle v, u \rangle$, $\langle v, v \rangle \ge 0$

Can solve linear equations of form { $\langle v_i, x \rangle = b_i$ } knowing only $\langle v_i, v_j \rangle$

Also do least-square minimization $\min_{x} \sum (\langle v_i, x \rangle - b_i)^2$ knowing only $\langle v_i, v_j \rangle$

DEF: Sym matrix $K \in \mathbb{R}^{n \times n}$ is p.s.d. if $v^T K v \ge 0$ for all $v \in \mathbb{R}^n$ Equivalently $\lambda_1(K), \dots, \lambda_n(K) \ge 0$

CLAIM: *K* is p.s.d. iff* $u^T K v$ is inner product

PROOF (\Rightarrow): $u^T Kv = \psi(u) \cdot \psi(v)$ where $\psi(u_1, ..., u_n) = (\sqrt{\lambda_1}u_1, ..., \sqrt{\lambda_n}u_n)$, expressed in eigenbasis

Kernel Methods

Goal: Solve linear equations, least-square minimization, etc. under φ

Observation: Enough to compute $K(x, x') = \langle \varphi(x), \varphi(x') \rangle$

Let $\hat{x} = \varphi(x)$, given $\{\hat{x}_i, y_i\}_{i=1..n}$ want to find $\hat{w} \in \mathbb{R}^n$ s.t. $\langle \hat{x}_i, \hat{w} \rangle \approx y_i \forall i$

can compute $\widehat{w} = \sum \alpha_i \ \widehat{x}_i$ using $K(x_i, x_j)$

To compute prediction on new x using \hat{w} , can compute $\hat{x} = \sum \beta_i \hat{x}_i$ using $K(x, x_i)$