
CS 229br Foundations of Deep Learning: Homework 0

Gustaf Ahdritz Boaz Barak Gal Kaplun

This homework should be done before the semester starts, and would need to be submitted as part of the
form to apply for the course. Given limited teaching resources, we will need to cap the number of admitted
students. However, we hope that you will still enjoy working on this problem set, even if we are not able to
offer you a seat. When working on these problem sets, feel free to use any book or online resource to brush
up on topics. We do expect from you not to try just search the concrete question and copy the answer, but
rather learn enough about the topic that you can understand it. In fact, being able to search up and learn
on your own will be an important skill for succeeding in this course. Collaboration is not allowed for
this problem set. While limited collaboration will be allowed for future problem sets, you should solve
problem set zero on your own.

If you have questions on the homework, feel free to email all of us (Boaz+Gustaf+Gal).

Submission instructions: Use the Google Form to submit your solution as two PDF files. For the Theory
part, type up your solutions using LATEX using the provided template. For the programming part, submit a
pdf of your jupyter notebook with the required code, plots, and responses.

This course will require you to train deep networks using a framework such as PyTorch, but we will not teach
those skills (though teaching fellows are always happy to give out pointers). Some good resources include:

• 60-min blitz Pytroch tutorial

• Beginner NN Pytorch tutorial

• For a more in-depth understanding of automatic differentiation, pytorch, and tensors go through Sasha
Rush’s minitorch. You can also do Sasha’s Tensor puzzles, GPU puzzles, and Auto differentiation
puzzles. (If you do solve some of these puzzles, please post your stats—how many puzzles you solved
from each sequence—on the course’s Slack board!)

• Another good resource for deep learning self-study is Dataflower

We strongly suggest you go over at least some of these resources before the semester begins. This will enable
you to get much more out of CS 229br.

Pen and paper questions

(While we recommend solving these using pen and paper, you will still need to type up your solution in
LATEX.)

Question 1. Consider the following setting.

• For some w∗ ∈ Rd, the distribution Dw∗ is over pairs (x, y) ∈ Rd+1 such that x ∼ N(0, Id) and
y = ⟨x,w∗⟩+N(0, 1).

• We are considering the regression task, in which we are given n samples S = {(x1, y1), . . . , (xn, yn)}
drawn independently from Dw∗ , and our goal is to find a function f : Rd → R that minimizes
E(x,y)∼Dw∗

[(f(x)− y)2]. We define this quantity as L(f).

1

https://forms.gle/gjXbdCVbqxRVu6Bj6
https://pytorch.org/tutorials/beginner/deep_learning_60min_blitz.html
https://pytorch.org/tutorials/beginner/nn_tutorial.html
https://minitorch.github.io/
https://github.com/srush/Tensor-Puzzles
https://github.com/srush/GPU-Puzzles
https://github.com/srush/Autodiff-Puzzles
https://github.com/srush/Autodiff-Puzzles
https://dataflowr.github.io/website/

Question 1.1 (Generalization bound). Let F be a finite set of bounded functions mapping Rd to [−B,B],
for some constant B > 0. Prove that with probability at least 0.01 over the choice of S,

max
f∈F

∣∣∣∣∣∣L(f) − 1
n

∑
(x,y)∈S

(f(x)− y)
2

∣∣∣∣∣∣ ≤ O

(√
log |F|

n

)

Hint. See link. We will also accept solutions that are poly-log(n) loose in the bound above.

Solution 1.1:

Your solution here

Question 1.2 (Optimization). In this question we consider the under-parameterized setting where n ≫ d.
Let F be the set {fw : w ∈ Rd+1} where fw(x) = ⟨w, x⟩. Assume ∥w∗∥2 = d, and consider the stochastic
gradient descent algorithm on L. For (x, y) and function f : Rd → R, we define Lx,y(f) = (f(x)− y)2, and
consider the following algorithm, where δ, η are hyperparameters:

• Let w0 ∼ N(0, δ · Id).

• For t = 0, 2, . . . , n− 1 do the following:

– Let (x, y) ∼ Dw∗

– Let wt+1 = wt − η∇wL(x,y)(fwt
)

Prove that, in expectation, this algorithm makes progress towards the optimal solution in every iteration.
Specifically, prove that there exists some constant c ∈ R such that, for any t:

E[∇wL(xt,yt)(fwt
)] = c(wt − w∗)

It is possible to use this fact to prove that, in this particular setting, SGD converges to the optimal solution
with high probability.

Solution 1.2:

Your solution here

Question 1.3 (Inductive bias). In this question we consider the over parameterized setting where n ≪ d. We
show that in this case gradient descent has a certain bias toward low-norm solutions. Specifically, consider
the algorithm above.

1. Prove that in all steps of stochastic gradient descent above, we maintain the invariant that wt ∈
Span(w0, x0, . . . , xt−1) where (xi, yi) is the sample drawn in step i.

2. Let S be some set {(x0, y0), . . . , (xn−1, yn−1)} in Rd in “general position” (∥xi∥2 ≈ d for all i,
⟨xi, xj⟩2 = o(

√
d) for all i ̸= j, |yi|2 = O(1)) and let w0 = 0. Suppose that we run the algorithm

on S and that it successfully converges, i.e. ∀i ≤ n, ⟨xi, wn⟩ = yi. Prove that wn is

arg min
w: s.t. ⟨xi,w⟩=yi

∥w∥2

Thus, among all possible “interpolating solutions” to the training set, the algorithm chooses the one
that is smallest in L2 norm.

Solution 1.3:

Item 1: Your solution here
Item 2: Your solution here

2

https://www.stat.berkeley.edu/~mjwain/stat210b/Chap2_TailBounds_Jan22_2015.pdf

Programming questions

Submit the results of the programming question - code, plots, and textual explanations - as a separate pdf
file

Question 2 (Toy image search engine). Complex classical algorithms often depend on elementary algorithms
with well-known properties—think binary search and quicksort—as subroutines. Analogously, state-of-the-
art machine learning (ML) pipelines are often built with combinations of “soft” pretrained machine learning
primitives. Developing a familiarity with the rapidly expanding toolkit of these ML “building blocks” will
make it easier to read new ML papers and design ML solutions of your own.

Over the past couple of years, OpenAI’s CLIP has become a popular primitive for a wide range of image-
related tasks. In this exercise, we will use CLIP to build a simple text-to-image search tool.

Question 2.1 (Setup). We will need a GPU to train models quickly. If you have an existing GPU setup
(e.g. via your lab), you can use that. Otherwise, we recommend using a free GPU on Google Colab:

• Create a Google Colab notebook

• In Runtime → “Change runtime type” select “GPU” as your hardware accelerator.

Note that your session will time out if you leave it unattended for too long.

We included a minimal notebook which trains a 5-layer CNN on CIFAR-10. Make sure you can run this on
your GPU (/Colab). It should reach 85% test accuracy in ∼4 minutes. Play around with parameters in this
notebook to get a better feeling of training models (try changing the model definition, the batch sizes, the
learning rate schedule, the number of train samples, the optimizer, etc). Record any interesting behaviors
you notice.

(Optional) The network we define has batch normalization layers. Remove these layers and try to train
the network. It should still work, but may be more sensitive to choices like initialization, layer widths, and
learning rates. If you are interested, we recommend this survey on optimization considerations in neural net-
works. It is an open problem to understand necessary and sufficient conditions that ensure neural networks
can be properly optimized with SGD (see the suggestions in the survey—can you replicate their predictions
with experiments?)

Extra Tips:

• Practical tips on training NNs, from Andrej Karpathy.

• How to Train Your ResNet by David Page, walks through the design and debugging process of training
a state-of-the-art network. Note the careful experimental design at each stage.

• For longer-running training jobs, you may want to create a stand-alone training script instead of
running jobs in notebooks.

• We highly recommend using wandb (free) to track and log your experiments. For example, we like to
use wandb to track train/test errors of models as they train and automatically plot them in the web
UI.

• You may like Lightning which removes some PyTorch boilerplate.

Question 2.2 (Comprehension). Read the first few pages of the CLIP paper (at least up to the evaluation
section). You may also consult other sources if you wish. In your own words, describe how CLIP works.
What kind of data is it trained on? What is the training objective? How does it differ conceptually from
simple classifiers like the one we trained in the previous exercise? What can it be used for?

3

https://colab.research.google.com/drive/1E838sz34fNS2OjsznT_hWIM_eulX4g2x?usp=sharing
https://arxiv.org/abs/1912.08957
http://karpathy.github.io/2019/04/25/recipe/
https://myrtle.ai/learn/how-to-train-your-resnet/
http://wandb.ai/
https://www.pytorchlightning.ai/
https://arxiv.org/abs/2103.00020

Question 2.3 (Search Engine). Install CLIP (checkpoint “ViT-B/32”) and Faiss, a library for efficient
vector similarity search. Make sure to take a look at the sample programs in both READMEs. To simplify
our computations a little, we’ll be using images from the training and validation sets of TinyImageNet, a
dramatically shrunken version of the full ImageNet dataset. Download it here. You’ll need to make an
account using your Harvard email.

As always, the first step is to get hands-on with the data; if there are problems, we’d rather know before we
spend time trying to optimize our ML pipelines. Manually inspect a handful of images chosen at random
from the training and validation sets. Write down some of your observations. What are some things you
notice about the images? Do the provided labels correspond well to what you see in the images? What are
some limitations of this dataset (even for human “search engines”)?

We’ll be implementing search over the validation set. Precompute CLIP embeddings (or “features”) for each
image in the set and store them in a Faiss index. Given a search query (e.g. “go-kart”), use CLIP to create
a text embedding of that query and then use that to search your Faiss index for the top k = 5 nearest
neighbors according to Euclidean distance. The images corresponding to these nearest neighbors are your
search results. Remember to take advantage of your GPU. That’s it! The algorithm is visualized in Figure 1.

Figure 1: Our search algorithm. Given a database of (unlabelled) images and a user-specified query, the
tool returns the indices of K = 5 images corresponding to the query. In the visualized example, 4/5 of the
returned images actually have the ImageNet label “go-kart”. Note that real CLIP embeddings are high-
dimensional.

Despite its simplicity, this tool is powerful; note that you can search for arbitrary phrases, including e.g.
adjectives (it can distinguish between “a car” and “a red car”). Play around with it a little, inspecting
the returned images. What kinds of mistakes does it make—do they seem random, or can you understand
why they happen? Can you fool it with a mean-spirited query? Evaluate its performance systematically
by computing accuracy on each TinyImageNet label in the validation set ((# hits that match the searched
label) / k). Report the mean accuracy across all labels as well as your own qualitative observations.

Question 2.4 (Improving the search engine). CLIP was trained on images much more diverse than the

4

https://github.com/openai/CLIP
https://github.com/facebookresearch/faiss
https://www.image-net.org/

tiny, thematically repetitive images in our dataset. In practice, if we cared enough about this particular
style of image, we could robustly improve our search engine by finetuning CLIP on text/image pairs from
our own dataset. Since we have limited time, data, and compute, however, we’ll be making more modest
modifications.

1. Since we know that our images probably always come from a small number of categories (our Tiny-
ImageNet labels), we could augment images in our database using metadata from a classifier. Train a
classifier (using a simple MLP or any other architecture of your choice) to predict the label of an image
given its CLIP embedding. Specifically, the output should be a distribution over four labels chosen at
random from the set of TinyImageNet labels with training data (this happens to be a subset of all of
the labels represented in the validation set). The remaining labels should be grouped together into a
single “other” label. Use cross-entropy loss. Additionally, be very careful not to backpropagate into
CLIP; detach all CLIP vectors before you feed them to your classifier, ensuring that you only train the
parameters of the classifier itself. In other words, CLIP should be “frozen” for this training run. For
the purposes of this problem, there’s no need to actually incorporate classifier predictions into your
search tool; training the classifier is enough. Again, we recommend tracking your classifier’s validation
set accuracy across the different labels using wandb. Submit your code and a plot of your classifier’s
validation set accuracy over time.

2. In Question 2.3, you’ll have noticed that your search engine’s performance is much worse on some
labels than others. Suppose that you have reason to believe that some of these low-accuracy queries
are particularly important; let’s say e.g. you think your users will be enthusiastic about the verbatim
query “scorpion,” which currently has low accuracy. In such cases, you might consider manually in-
tervening. We have training data for “scorpion,” and, as we have argued, that training data is more
likely to resemble validation set scorpions than the images CLIP was trained on. Think about how we
can use this training data to improve corresponding queries. One simple approach is to train an MLP
using SGD to map the single CLIP text query to a query more closely aligned with the CLIP image
embeddings of the training data. This has the advantage of not requiring much thought on our part.
We encourage you to try this; by passing your low-accuracy ImageNet label CLIP queries through
bespoke MLPs, you’ll be able to improve accuracy to >= 0.8.

A common pitfall, however, is applying ML where it isn’t strictly needed, creating solutions that are
more opaque and therefore difficult to maintain than necessary. Can you think of a simple way to use
the CLIP training image embeddings for a particular label to create a better query vector for that
label without training a model?

5

